This article was downloaded by: [University of Haifa Library]

On: 16 August 2012, At: 09:01 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl19

Synthesis and Photocatalytic Property of Hectorite/(Pt, TiO₂) and H₄Nb₆O₁₇/(Pt, TiO₂) Nanocomposites

Sambandan Ekambaram ^a , Masaru Yanagisawa ^a , Satoshi Uchida ^a , Yoshinobu Fujishiro ^a & Tsugio Sato ^a

Version of record first published: 27 Oct 2006

To cite this article: Sambandan Ekambaram, Masaru Yanagisawa, Satoshi Uchida, Yoshinobu Fujishiro & Tsugio Sato (2000): Synthesis and Photocatalytic Property of Hectorite/(Pt, TiO_2) and $H_4Nb_6O_{17}/(Pt, TiO_2)$ Nanocomposites, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 341:2, 213-218

To link to this article: http://dx.doi.org/10.1080/10587250008026142

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

^a Institute for Chemical Reaction Science, Tohoku University, Sendai, 980-8577, JAPAN

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and Photocatalytic Property of Hectorite/(Pt,TiO₂) and H₄Nb₆O₁₇ /(Pt,TiO₂) Nanocomposites

SAMBANDAN EKAMBARAM, MASARU YANAGISAWA, SATOSHI UCHIDA, YOSHINOBU FUJISHIRO and TSUGIO SATO

Institute for Chemical Reaction Science, Tohoku University, Sendai 980–8577, JAPAN

(In final form July 5, 1999)

TiO₂ and Pt have been intercalated in hectorite and $H_4Nb_6O_{17}$. The height of TiO₂ and Pt pillars was less than 0.8 nm and the band gap energy of TiO₂ pillars was ca. 3.3 eV. Both hectorite/TiO₂ and $H_4Nb_6O_{17}/(Pt,TiO_2)$ were capable of hydrogen evolution following irradiation from a high pressure mercury arc ($\lambda > 290$ nm) in the presence of methanol as a sacrificial hole acceptor and the hydrogen evolution was enhanced by co-incorporation of Pt, although hectorite and hectorite/Pt did not show photocatalytic activity. Incorporation of Pt or Pt and TiO₂ in the interlayer of H_4Nb_6 O_{17} has resulted in enhanced photo evolution of hydrogen, however, TiO₂ alone in the interlayer of $H_4Nb_6O_{17}$ showed adverse photocatalytic activity.

Keywords: intercalation; titania pillar; hexaniobate; photocatalyst

INTRODUCTION

Recently, there has been an upsurge of interest in nanocrystalline semiconductor oxides because of their vital applications for solar fuel production and solar detoxification. For effective utilization of photo-induced charge carriers various studies have been performed. [1-9] Semiconductor pillars constructed in layered oxides are important because of their improved photocatalytic activity compared with that of unsupported semiconductors. Recent studies, from this

laboratory, $^{[10,11]}$ revealed that the incorporation of semiconductor in the interlayer of semiconductor sheet mitigates the recombination of photogenerated electrons and holes by separating them between the incorporated semiconductor and layer semiconductor sheet. In continuation of our studies on photofission of water, the photocatalytic activities of TiO_2 and Pt incorporated hectorite and $H_4Nb_6O_{17}$ were evaluated.

EXPERIMENTAL

- (a) Synthesis of hectorite/TiO₂ and hectorite/(Pt,TiO₂) Acetic acid (211 g) was first mixed with titanium tetraisopropoxide (50 g) for 30 min followed by the addition of water (64 g) to give a clear solution of [Ti(OH)_x(CH₃COO)_y]^z. Then hectorite (2 g) was dispersed in the solution to allow intercalation of [Ti(OH)_x(CH₃COO)_y]^{z+} for 1 d at room temperature. The obtained sample, after being filtered off and washed with water, was calcined in air at 550°C for 2 h. The resulting materials is designated hectorite/TiO₂. Hectorite/(Pt,TiO₂) was prepared by reacting hectorite/TiO₂ (1.5 g) in 0.1 M [Pt(NH₃)₄]Cl₂ solution at room temperature for 3 d followed by the irradiation with UV light from a 450 W high pressure mercury lamp at room temperature for 10 h.
- (b) Synthesis of $H_4Nb_6O_{17}$ /(Pt,TiO₂) Procedure employed for photodeposition of Pt into the layer of $H_4Nb_6O_{17}$ was the same as described for synthesis of hectorite/(Pt,TiO₂). $H_4Nb_6O_{17}$ /TiO₂ and $H_4Nb_6O_{17}$ /(Pt,TiO₂) were prepared by stepwise reactions of $H_4Nb_6O_{17}$, and $H_4Nb_6O_{17}$ /Pt with 50 vol.% $C_3H_7NH_2$ and $[Ti(OH)_x(CH_3COO)_y]^{2^x}$ solutions followed by photodecomposition of $[Ti(OH)_x(CH_3COO)_y]^{2^x}$ with UV light from a 450 W high pressure mercury lamp at room temperature for 10 h.
- (c) Characterization and photocatalytic reaction Formation of TiO₂ and Pt pillars was confirmed by powder X-ray diffraction, UV-Vis absorption and

ICP atomic emission spectroscopy after alkali fusion with Na₂CO₃ followed by dissolving the samples in 6 M HCl-15 wt% H_2O_2 . The photoactivity of the catalyst was determined using an inner radiation type apparatus by measuring the volume of H_2 evolved from 1250 cm³ of 20 vol% methanol solution containing 1 g of dispersed catalyst at 60°C exposed to irradiation ($\lambda > 290$ nm) from a 450 W mercury arc with a gas burette.

RESULTS AND DISCUSSION

DTA profiles of the samples are shown in Fig. 1. [Ti(OH)_x(CH₃COO)_y]^{x*} incorporated hectorite showed an exothermic peak at 453°C which corresponds to the combustion of CH₃COO group. The exothermic peak disappeared after calcination (500°C, 2 h), indicating that the CH₃COO group was decomposed.

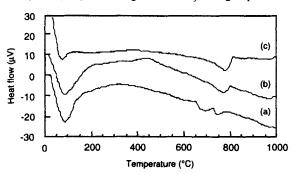


FIGURE 1 DTA profiles of (a) hectorite and (b) hectorite/ [Ti(OH)_x(CH₃COO)_y]^{z+} and (c) hectorite/TiO₂.

Figure 2 shows the powder XRD patterns of (a) hectorite and hectorite/
[Ti(OH)_x(CH₃COO)_y]^{z++} (b) as-prepared, (c) calcined at 500°C and (d) calcinedat 1000°C. The samples (c) showed no XRD peaks corresponding to TiO₂ although sample (d) showed diffraction peak of rutile, indicating that TiO₂ was incorporated in the interlayer.

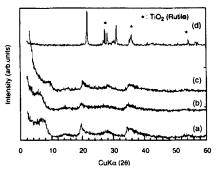
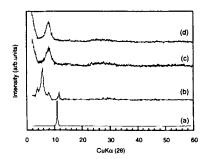



FIGURE 2 Powder X-ray diffraction profiles of (a) hectorite and hectorite/[Ti(OH)_x(CH₃COO)_y]^{x+} (b) as-prepared, (c) irradiated UV-light, (d) calcined at 500°C and (e) calcined at 1000°C.

Figure 3 shows XRD patterns of (a) $H_4Nb_6O_{17}$, (b) $H_4Nb_6O_{17}/n$ - $C_3H_7NH_3^+$, (c) $H_4Nb_6O_{17}/[Ti(OH)_s(CH_3COO)_y]^{z^+}$ and (d) $H_4Nb_6O_{17}/TiO_2$. The main peak corresponding to (040) of $H_4Nb_6O_{17}$ changed significantly depending on the material incorporated.

$$\begin{split} &FIGURE\ 3\quad XRD\ patterns\ of\ (a)\ H_{4}Nb_{6}O_{17}\ ,\ (b)\ H_{4}Nb_{6}O_{17}\ /n-C_{3}H_{7}NH_{3}\ ^{\star},\\ &(c)\ H_{4}Nb_{6}O_{17}\ /[Ti(OH)_{x}(CH_{3}COO)_{y}]^{z^{\star}}\ \ and\ (d)\ H_{4}Nb_{6}O_{17}\ /TiO_{2}. \end{split}$$

The characteristics of the samples are summarized in Table 1. The gallery height which indicates the pillar height was less than 0.8 nm. The band gap energy of TiO₂ incorporated was slightly larger than that of unsupported TiO₂. Photocatalytic hydrogen evolution behaviors from methanol solutions dispersed

Compound	Content (wt%)		Gallery height	Band gap
	Ti	_Pt	(nm)	(eV)
hectorite/TiO ₂	4.63	0	0.78	3.3
hectorite/(Pt, TiO ₂)	4.63	0.06	0.78	3.3
K ₄ Nb ₆ O ₁₇	0	0	0.50	3.4
H ₄ Nb ₆ O ₁₇	0	0	0.40	3.3
H ₄ Nb ₆ O ₁₇ /TiO ₂	10.9	0	0.52	3.2
H ₄ Nb ₆ O ₁₇ /Pt	0	0.26	0.40	3.3
$H_4Nb_6O_{17}/(Pt,TiO_2)$	11.6	0.26	0.52	3.2
TiO ₂ (P-25)	59.9	0	-	3.1

TABLE 1 Summary of the characteristics of the prepared samples

various catalysts are shown in Fig. 4. Hectorite/TiO₂ was capable of hydrogen evolution and the activity was increased by co-incorporation of Pt, although hectorite and hectorite/Pt did not show photocatalytic activity. The activity of hectorite/TiO₂ was almost the same with that of P-25, although the TiO₂ content was 4.63 wt%. K₄Nb₆O₁₇ showed photocatalytic activity similar to P-25. The activity of H₄Nb₆O₁₇ is ca. 3.5 times greater than that of K₄Nb₆O₁₇. Interestingly photocatalytic activity of H₄Nb₆O₁₇ was improved 4.2 and 8.5 times by the incorporation of Pt and co-incorporation of TiO₂ and Pt, but slightly decreased by incorporating TiO₂ alone. The promotion of hydrogen evolution in the

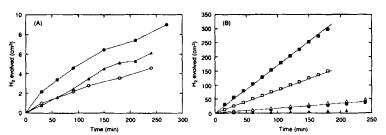


FIGURE 4 Cummulative amounts of hydrogen evolved by irradiating 450 W mercury arc (λ >290 nm) from the suspension of 1 g catalyst in 1250 cm³ of 20 vol% methanol solution. (A) \bigcirc : hectorite/TiO₂, \blacksquare : hectorite/(TiO₂, Pt), \blacktriangle : TiO₂ (Degussa P-25), (B) \blacktriangle : K₄Nb₆O₁₇, \triangle : H₄Nb₆O₁₇, \blacksquare : H₄Nb₆O₁₇/TiO₂, \square : H₄Nb₆O₁₇/Pt, \blacksquare : H₄Nb₆O₁₇/Pt, TiO₂)

presence of Pt may be due to the electron transfer from H₄Nb₆O₁₇ and/or TiO₂ to Pt. When H₄Nb₆O₁₇/TiO₂ was photoirradiated in methanol solution, the color of the samples changed from white to blue, indicating the reduction of TiO₂. It might be the reason why the incorporation of TiO₂ alone showed adverse photocatalytic activity.

CONCLUSION

The photocatalytic activity for H_2 evolution from methanol solution was in the order $H_4Nb_6O_{17}/(Pt,TiO_2)>H_4Nb_6O_{17}/Pt > H_4Nb_6O_{17}> H_4Nb_6O_{17}/TiO_2$ >>hectorite/ (Pt,TiO₂)> hectorit /TiO₂=K₄Nb₆O₁₇ = unsupporte TiO₂ (P-25).

References

- P. V. Kamat, in Studies in Surface Science and Catalysis edited by B. Delmon and J.T. Yates (Elsevier Science B.V., 1997), Vol. 103, p.237.
- [2] K.R. Gopidas, M. Bohorquez and P. V. Kamat, J. Phys. Chem., 94, 6435 (1990).
- [3] Y.I. Kim, S.J. Atherton, E. S. Brigham and T.E. Mallouk, J. Phys. Chem., 97, 11802 (1993).
- [4] T. Sato, K. Masaki, K. Sato, Y. Fujishiro and A. Okuwaki, J. Chem. Tech. Biotechnol., 67, 339 (1996).
- [5] T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, Chem. Mater., 9, 1063 (1997).
- [6] G. B. Saupe, T.E. Mallouk, W. Kim and R.H. Schmehl, J. Phys. Chem. B, 101, 2508 (1997).
- [7] W. Choi, A. Termin and M. R. Hoffmann, Angew. Chem. Int. Ed. Engl., 33, 1091 (1994).
- [8] W. Choi, A. Termin and M.R. Hoffmann, J. Phys. Chem., 98, 13669 (1994).
- [9] J. Moser, M. Gratzel and R. Gallary, Helvetica Chimica Acta, 70, 1596 (1987).
- [10] T. Sato, Y. Yamamoto, Y. Fujishiro and S. Uchida, J. Chem. Soc., Faraday Trans., 92, 5089 (1996).
- [11] S. Uchida, Y. Yamamoto, Y. Fujishiro, A. Watanabe, O. Ito and T. Sato, J. Chem. Soc., Faraday Trans., 93, 3229 (1997).
- [12] S. Doeuff, M. Henry, C. Sanchez and J. Livage, J. Non-cryst. Solids., 89, 206 (1987).
- [13] C. Kao and W. Yang, Ceramics International, 22, 57 (1996).